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Abstract—Because of the activation of IoT (Internet of Things)
devices due to the rapid development of recent communication
technology, network traffic is currently fluctuating and increasing
explosively. As existing network resource management policies
are not sophisticated enough to cope with network conditions
that change constantly, resource utilization can be lowered
and costs can be higher. With the recent advances in deep
learning techniques, network operators can manage networks
intelligently. For the intelligent network, there is a technique
which predict the state of network links. However, when the
scale of the network increases, overall network management
can be complicated. In addition, as the models of link state
prediction are affected by the states of adjacent links, it is
necessary to consider the spatio-temporal characteristics between
links. In this paper, we propose a GCN(Graph Convolutional
Neural Network)-GRU(Gated Recurrent Unit) based link state
prediction technique. The proposed GCN-GRU model predicts
network traffic by considering the spatio-temporal characteristics
of each link state such as bandwidth, delay, and packet loss rate.
Through extensive experiments on actual network traffic, the
proposed GCN-GRU based link state prediction technique has
shown to achieve 1.5% lower a mean absolute percentage error
(MAPE) compared to a LSTM (Long Short term Memory) based
link state prediction technique.

Index Terms—Software-Defined Networking, Graph Convolu-
tional Network, Gated Recurrent Unit, Link State Prediction

I. INTRODUCTION

Depending on the activation of devices such as sensors,
mobiles, wearables and other IoT devices, the amount of
IoT data moving over the network is exploding. However,
as the amount of data is increasing explosively, the current
Internet infrastructure is not suitable for adjusting the network
resource allocation. When the network resources are wasted
by the resource allocation techniques such as static threshold,
the resource utilization is generally low and the network
costs increase. Making cost effective resource allocation while
optimizing network and resource utilization, network state pre-
diction techniques help to dynamically plan network resources.

In order to dynamically plan the network resources, the
traffic volume prediction techniques using network traffic
seasonality was studied [1, 2]. However, because of unex-
pected behavior of network users, network traffic reveals many
features such as high jitter and non-linearity [3]. In non-linear
network traffic [4], burstiness [5] and randomness are easily
observed, and the performance of traffic volume prediction
techniques using seasonality are degraded. Recently, with

the activation of deep learning neural networks, the network
traffic volume prediction techniques using a time series neural
network achieves a low error rate [6]. However, as only
using the information of traffic flows for the management of
overall network resources is not sufficient, the representation
of network states is needed. In order to predict the network
state, a traffic matrix including bandwidth, delay, and packet
loss rate is estimated using the time series neural network
[7, 8].

However, in the case of a large-scale network intercon-
nected between multiple sites linking overseas sites, the global
management for network state prediction models are needed
[9, 10]. In order to manage multiple models, the prediction
model for aggregated traffic using time series neural network
was studied [11]. However, even if the general time-series
neural networks can learn spatial dependencies, it may be
inevitable to capture some amount of noise and spurious
relationships that are likely not to represent causal structures
in graph-structured networks. In order to forecast traffic in
the complex graph-structured network, a GCN (Graph Con-
volutional Network) that captures the spatial and temporal
dependency is studied [12]. This GCN model predicts the
network state by using the adjacent matrix representing the
graph structure consisting links and features of links.

In this paper, we propose a GCN-GRU based link state
prediction technique. In order to manage a network and predict
each of link(equals to one hop) state, the proposed technique
constructs the direction of graph representing the one hop
links as the vertex and connection between the links (the link
between nodes is two hops) as edge, and collects the link
state information such as bandwidth, delay and the packet
loss rate from the each links. For efficient representation for
link state, the aggregated link state information is used to
calculate link utilization. The proposed GCN-GRU model uses
link utilization of each link as inputs and predicts the states of
each links. In order to verify the effectiveness of the proposed
technique, the model was evaluated using real network traffic
data.

The rest of this paper is arranged as follows. Chapter II
describes the work associated with network traffic prediction
for managing graph-structure network efficient. Chapter III
describes the proposed GCN-GRU based based link state
prediction model. Chapter IV presents the results of the ex-
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periment. Chapter V provides conclusions and future research
directions.

II. RELATED WORK

The rapid development of data center networks and the
explosive growth of cloud-driven applications are continuously
generating the tremendous amounts of traffic. These traffic
exhibit highly dynamic, heterogeneous, and asymmetric char-
acteristics, so that the broker plane should have robust traffic
engineering methods to improve network throughput. a SDN
(Software-Defined Networking) [13] provides more dynamic,
manageable and adaptive network control logic to handle high
bandwidth and modern applications, making networks more
flexible and efficient. Additionally, network administrator can
use SDN to dynamically adjust the flow of traffic across the
network to meet new application requirements [14]. Aiming
at improving network performance on evolving scenarios, we
consider the statistical characteristics of traffic observed on the
network are time dependent, self-similarity, seasonality, non-
linearity, randomness and burstiness.

In a stable network, traffic characteristics such as time-
dependency, self-similarity and seasonality are observed.
Moayedi et al. [15] suggest a ARIMA (Autoregressive In-
tegrated Moving Average) based traffic prediction model to
increase the accuracy of prediction. However, because of
irregular usage patterns of network users [3], the amount of
traffic characteristics such as non-linearity [4], randomness,
and burstiness [5] are observed. Lu et al. [16] suggest a
real-time network traffic prediction model based on LSTM
to cope with network traffic burstiness and uncertainty. In
this time, if network traffic trend is distinguished in same
embedding spaces to express relationship between the traffic
trends, LSTM can be efficiently customized [8]. However, in
order to solve the problem of long time learning due to the
complex structure of LSTM, a GRU (Gated Recurrent Units)
model with a relatively simple structure, fewer parameters, and
fast learning ability has been studied [17]. However, when the
state of the large-scale network are predicted, it is difficult to
manage a lot of link state prediction models located in the
links constituting the network. In addition, the state of each
link can be affected by the states of neighbor links.

Recently, a GNN (Graph Neural Network) have been ac-
tivated to model correlations between links and generate
representations in networks of graph structures. In particular,
for large-scale network graphs, GNN requires eigenvalue de-
composition of Laplacian matrices, which is a computationally
complex procedure. Yu et al. [18] developed a GNN which
considered spatial correlation to predict traffic flow, but did not
consider temporal correlation of data simultaneously. In this
paper, we propose a GCN-GRU based link state prediction
technique that considers spatiotemporal correlation in large-
scale networks.

III. GCN-GRU BASED LINK STATE PREDICTION

With the recent advances in the Software Defined Net-
working paradigm, research to consider the network as a

Fig. 1. Link State Aggregation from GEANT2 Network Topology

black box and optimize it by operating through a control
loop to provide automation, recommendations, optimization,
verification, and estimation is being activated [13]. In order
to optimize autonomously network resource in large-scale
network, it is necessary to predict and manage the overall
network state. In this paper, we use link-level prediction to
make the network respond early to congestion events and avoid
packet loss and delay increase.

Figure 1 show a link state aggregation for updating the
specific link state from the adjacent links. For example, we
predict the state of a one-hop-level link, and aggregate infor-
mation of the adjacent link e connected to the target link v to
predict the link state of overall network. For the representation
of complex link relationship in graph-structure network, an
adjacency matrix AM that represents the connection between
links and an feature matrix FM that manages link information
Link from all links are used. At this time, if the number of
links is N , the shape of the adjacency matrix AM becomes
2N × 2N considering the link direction. The elements of the
adjacency matrix AM are represented in binary. When the
target links and adjacent links are interconnected, the element
of the adjacency matrix is 1, conversely, the element of the
adjacency matrix is 0.

In order to collect link state information Link by direction
of the link, the shape of the feature matrix FM becomes
2N × Link. In this time, we define link utilization lui to
simplify link state by using link state information Link such
as bandwidth utilization bwui, delay di, packet loss rate pli
observed on time i as shown in equation 1.

lui =
w1 ∗ ¨bwui + w2 ∗ d̈i + w3 ∗ p̈li

w1 + w2 + w3
(1)

In this time, the weight w represent Importance of the specific
element in link utilization. The weight is represented as shown
in equation 2.

w1 + w2 + w3 = 1, w1, w2, w3 ∈ [0, 1] (2)
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Fig. 2. Architecture of GCN-GRU based Link State Prediction Model

Because of each link state element composed of a different
unit, the Min-Max method is used to normalize each element.
The normalization is shown in equation 3.

ẍi =
xi −min(X)

max(X)−min(X)
, ẍi ∈ X (3)

The link utilization lui can be represented as one of the
bandwidth utilization bwui, one of the delay di, and one of the
packet loss rate pli according to weights w1, w2, w3. However,
we set each weight w to 1/3 in order to equally represent the
importance of the elements constituting the link utilization.

For the prediction of next the link utilization from a complex
graph-structured network, it is necessary to learn spatio-
temporal features in the graph convolution neural network.
Figure 2 shows the architecture of GCN-GRU based link state
prediction model. This model consists of GCN layer and GRU
layer. First, in order to acquire the spatial dependence of
complex graph-structured network links, the GCN layer trains
link utilization as input. Given an adjacency matrix and the
feature matrix, the GCN layer constructs a filter in the fourier
domain. The filter of GCN model captures spatial features
between the nodes by its first-order neighborhood. Second, in
order to capture temporal features of link utilization, the GRU
model train time series data that obtained spatio feature as
input. The GRU layer learns the link utilization from the past
to the present and predicts the next link utilization.

IV. EVALUATION

In this section, we evaluate the accuracy of GCN based
link state prediction. In order to evaluate the performance
of GCN model, we built a ground truth with one of delay
simulator with queues using OMNeT++. In this environment,
we simulate with the variable link capacities in a GEANT2
and NSFNET topology. By applying more than 200 different
routing schemes on the GEANT2 and NSFNET topology,
we compute the mean delay, sparse bandwidth and packets
drop for every links along time units. The link capacities
range the following values: 10, 40 or 100 kbps. We generates
50,000 link state matrices that consist of bandwidth, delay and
packet drops. For the evaluation of proposed model, we use
40,000 samples to train and 10,000 samples to test. In order to
minimize the loss function between the prediction results and
the ground truth during training, we use the adam optimizer

Fig. 3. Performance Comparison of Link State Prediction under different
Traffic Intensity in GEANT2 and NSFNET topology

and set an initial learning rate to 0.001. And, we use a MAPE
(Mean Absolute Percentage Error) to evaluate the prediction
quality of each prediction model. Because sparse bandwidth
changes according to traffic intensity, the MAPE of model can
be changed according to traffic intensity.

Figure 3 show the performance comparison of link state
prediction model under the traffic intensity in GEANT2 and
NSFNET. In case of the GEANT2 topology, it consists of
25 nodes and 37 links (e.g. 74 link direction). The GEANT2
topology shows a relatively complex graph structure with 9
adjacent links on some link. If the traffic intensity increases,
the burst rate and randomness increase. When the traffic
intensity is 9 which shows relatively low burst rate and low
randomness, the performance of LSTM, GRU, and GCN-GRU
model are similar. However, when the traffic intensity is 12
which shows relatively high burst rate and high randomness,
the performance of models is highest in order of GCN-GRU,
GRU, and LSTM. The LSTM and the GRU use gated mech-
anism to memorize as much long-term information as possi-
ble. However, because of complex graph structure network,
LSTM has a longer training time while the GRU model show
the relatively simple structure and faster training time. And,
because the GCN-GRU learns the correlation between each
link state and neighbor link state, the GCN-GRU shows lower
MAPE than the LSTM and the GRU. In case of the NSFNET
topology, it consists of 14 nodes and 21 links (e.g. 42 link
direction). The NSFNET topology shows a relatively simple
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graph structure with 4 adjacent links on some link. In this
NSFNET topology, when the traffic intensity increases, MAPE
of LSTM, GRU and GCN-GRU also increases. However,
regardless of traffic intensity, the performance of models is
highest in order of GCN-GRU, GRU, and LSTM.

V. CONCLUSION

In this paper, we propose a GCN-GRU based link state
prediction technique. We use the graph convolutional network
to model a graph network in which the nodes on the graph
represent of network links, the edges represent the connection
relationships between links, and the link state information on
the network is described as the attribute of the links on the
graph. In the proposed model, GCN is used to capture the
spatial network structure of the graph for obtaining the spatial
dependence; GRU is introduced to capture the dynamic change
of node attribute for obtaining the temporal dependence. In
order to verify the effectiveness of the proposed technique,
we evaluate that the GCN-GRU model was compared with
the LSTM model and the GRU model using the network
simulation dataset, and it showed 1.5% lower MAPE compared
to the conventional LSTM model. In the future, we will
study reinforcement learning-based routing using the proposed
GCN-GRU based network link state prediction model.
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